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Introduction



A (Very) Brief History of Automated Reasoning

Philosophers have long dreamed of machines that can reason.
The pursuit of this dream has occupied some of the best minds
and led both to great acheivements and great disappointments.
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Automated Reasoning

Automated Reasoning: A Failure?

• At the turn of the century, automated reasoning was still
considered by many to be impractical for most real-world
applications

• Interesting problems appeared to be beyond the reach of
automated methods because of decidability and complexity
barriers

• The dream of Hilbert’s mechanized mathematics or Leibniz’s
calculating machine was believed by many to be simply
unattainable
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The Satisfiability Revolution

Princeton, c. 2000

• Chaff SAT solver: orders of magnitude faster than previous SAT
solvers

• Important observation: many real-world problems do not exhibit
worst-case theoretical performance

Palo Alto, c. 2001

• Idea: combine fast new SAT solvers with decision procedures for
decidable first-order theories

• SVC, CVC solvers (Stanford); ICS, Yices solvers (SRI)

• Satisfiability Modulo Theories (SMT) was born
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SMT solvers

SMT solvers: general-purpose logic engines

• Given condition X , is it possible for Y to happen

• X and Y are expressed in a rich logical language
• First-order logic
• Domain-specific reasoning

• arithmetic, arrays, bit-vectors, data types, etc.

SMT solvers are changing the way people solve problems

• Instead of building a special-purpose solver

• Translate into a logical formula and use an SMT solver

• Not only easier, often better
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SMT Solvers
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SMT Solvers

8

SAT Solver
• Only sees Boolean skeleton

of problem

• Builds partial model by
assigning truth values to
literals

• Sends these literals to the
core as assertions



SMT Solvers
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Core
• Sends each assertion to the

appropriate theory

• Sends deduced literals to
other theories/SAT solver

• Handles theory combination



SMT Solvers
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Theory Solvers
• Decide T -satisfiability of a

conjunction of theory literals

• Incremental

• Backtrackable

• Conflict Generation

• Theory Propagation



Theory Solvers



Theory Solvers

Given a theory T , a Theory Solver for T takes as input a set Φ of
literals and determines whether Φ is T -satisfiable.

Φ is T -satisfiable iff there is some model M of T such that each
formula in Φ holds in M .
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Theories of Interest: UF

Equality (“) with Uninterpreted Functions [NO80, BD94, NO07]

Typically used to abstract unsupported constructs, e.g.:

• non-linear multiplication in arithmetic
• ALUs in circuits

Example: The formula

a ˚ p|b| ` cq “ d ^ b ˚ p|a| ` cq ‰ d ^ a “ b

is unsatisfiable, but no arithmetic reasoning is needed:

if we abstract it to

mulpa, addpabspbq, cqq “ d ^ mulpb, addpabspaq, cqq ‰ d ^ a “ b

it is still unsatisfiable 10



Theories of Interest: Arithmetic

Very useful, for obvious reasons

Restricted fragments (over the reals or the integers) support more
efficient methods:

• Bounds: x ’ k with ’ P tă, ą, ď, ě, “u [BBC`05a]

• Difference logic: x´ y ’ k, with
’ P tă, ą, ď, ě, “u [NO05, WIGG05, CM06]

• UTVPI: ˘x˘ y ’ k, with ’ P tă, ą, ď, ě, “u [LM05]

• Linear arithmetic, e.g: 2x´ 3y ` 4z ď 5 [DdM06]

• Non-linear arithmetic, e.g:
2xy ` 4xz2 ´ 5y ď 10 [BLNM`09, ZM10, JdM12]
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Theories of Interest: Arrays

Used in software verification and hardware verification (for
memories) [SBDL01, BNO`08a, dMB09]

Two interpreted function symbols read and write

Axiomatized by:

• @a@i@v. readpwritepa, i, vq, iq “ v

• @a@i@j @v. i ‰ j Ñ readpwritepa, i, vq, jq “ readpa, jq

Sometimes also with extensionality :

• @a@b. p@i. readpa, iq “ readpb, iq Ñ a “ bq

Is the following set of literals satisfiable in this theory?

writepa, i, xq ‰ b, readpb, iq “ y, readpwritepb, i, xq, jq “ y, a “ b, i “ j
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Theories of Interest: Bitvectors

Useful both in hardware and software verification [BCF`07, BB09, HBJ`14]

Universe consists of (fixed-sized) vectors of bits

Different types of operations:

• String-like: concat, extract, . . .

• Logical: bit-wise not, or, and, . . .

• Arithmetic: add, subtract, multiply, . . .

• Comparison: ă,ą, . . .

Is this formula satisfiable over bitvectors of size 3?

ar1 : 0s ‰ br1 : 0s ^ pa | bq “ c ^ cr0s “ 0 ^ ar1s ` br1s “ 0
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Implementing a Theory Solver: Difference Logic

We consider a simple example: difference logic.

In difference logic, we are interested in the satisfiability of a
conjunction of arithmetic atoms.

Each atom is of the form x´ y ’ c, where x and y are variables, c is
a numeric constant, and ’ P t“,ă,ď,ą,ěu.

The variables can range over either the integers (QF_IDL) or the reals
(QF_RDL).
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Difference Logic

The first step is to rewrite everything in terms of ď:
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Difference Logic

Now we have a conjunction of literals, all of the form x´ y ď c.

From these literals, we form a weighted directed graph with a vertex
for each variable.

For each literal x´ y ď c, there is an edge x c
ÝÑ y.

The set of literals is satisfiable iff there is no cycle for which the sum
of the weights on the edges is negative.

There are a number of efficient algorithms for detecting negative
cycles in graphs.
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Difference Logic Example

x´ y “ 5 ^ z´ y ě 2 ^ z´ x ą 2 ^ w´ x “ 2 ^ z´w ă 0
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Difference Logic Example

x´ y “ 5 ^ z´ y ě 2 ^ z´ x ą 2 ^ w´ x “ 2 ^ z´w ă 0

x´ y “ 5

z ´ y ě 2

z ´ x ą 2

ñ

w ´ x “ 2

w ´ x ď 2^ x´ w ď ´2

z ´ w ă 0
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Difference Logic Example

x´ y “ 5 ^ z´ y ě 2 ^ z´ x ą 2 ^ w´ x “ 2 ^ z´w ă 0

x´ y “ 5

z ´ y ě 2

z ´ x ą 2 ñ
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Difference Logic Example

x´ y “ 5 ^ z´ y ě 2 ^ z´ x ą 2 ^ w´ x “ 2 ^ z´w ă 0

x´ y “ 5 x´ y ď 5^ y ´ x ď ´5

z ´ y ě 2 y ´ z ď ´2

z ´ x ą 2 ñ x´ z ď ´3

w ´ x “ 2 w ´ x ď 2^ x´ w ď ´2

z ´ w ă 0 z ´ w ď ´1
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Difference Logic Example
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DPLL(T ): Combining T -Solvers with SAT



Satisfiability Modulo a Theory T

Def. A formula is (un)satisfiable in a theory T , or T -(un)satisfiable, if
there is a (no) model of T that satisfies it

Note: The T -satisfiability of quantifier-free formulas is decidable iff
the T -satisfiability of conjunctions/sets of literals is decidable

(Convert the formula in DNF and check if any of its disjuncts is T -sat)

Problem: In practice, dealing with Boolean combinations of literals
is as hard as in propositional logic

Solution: Exploit propositional satisfiability technology
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Lifting SAT Technology to SMT

Two main approaches:

1. “Eager” [PRSS99, SSB02, SLB03, BGV01, BV02]

• translate into an equisatisfiable propositional formula
• feed it to any SAT solver

Notable systems: UCLID

2. “Lazy” [ACG00, dMR02, BDS02, ABC`02]

• abstract the input formula to a propositional one
• feed it to a (DPLL-based) SAT solver
• use a theory decision procedure to refine the formula and guide

the SAT solver

Notable systems: cvc5, z3

This talk will focus on the lazy approach 22
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Lazy Approach – Main Benefits

• Every tool does what it is good at:

• SAT solver takes care of Boolean information

• Theory solver takes care of theory information

• The theory solver works only with conjunctions of literals

• Modular approach:

• SAT and theory solvers communicate via a simple API [GHN`04]

• SMT for a new theory only requires new theory solver

• An off-the-shelf SAT solver can be embedded in a lazy SMT
system with few new lines of code (tens)
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An Abstract Framework for Lazy SMT

Several variants and enhancements of lazy SMT solvers exist

They can be modeled abstractly and declaratively as transition
systems

A transition system is a binary relation over states, induced by a set of
conditional transition rules

The framework can be first developed for SAT and then extended to
lazy SMT [NOT06, KG07]
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The Original DPLL Procedure

• Modern SAT solvers are based on the DPLL
procedure [DP60, DLL62]

• DPLL tries to build incrementally a satisfying truth assignment
M for a CNF formula F

• M is grown by
• deducing the truth value of a literal from M and F , or
• guessing a truth value

• If a wrong guess for a literal leads to an inconsistency, the
procedure backtracks and tries the opposite value
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An Abstract Framework for DPLL

States:

fail or xM,F y

where

• M is a sequence of literals and decision points ‚
denoting a partial truth assignment

• F is a set of clauses denoting a CNF formula

Def. If M “M0 ‚M1 ‚ ¨ ¨ ¨ ‚Mn where each Mi contains no decision points

• Mi is decision level i of M

• M ris def
“ M0 ‚ ¨ ¨ ¨ ‚Mi
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An Abstract Framework for DPLL

States:

fail or xM,F y

Initial state:

• xpq, F0y, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable

• xM,Gy otherwise, where
• G is equivalent to F0 and
• M satisfies G
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Transition Rules: Notation

States treated like records:

• M denotes the truth assignment component of current state

• F denotes the formula component of current state

Transition rules in guarded assignment form [KG07]

p1 ¨ ¨ ¨ pn

rM :“ e1s rF :“ e2s

updating M, F or both when premises p1, . . . , pn all hold

27



Transition Rules for the Original DPLL

Extending the assignment

Propagate
l1 _ ¨ ¨ ¨ _ ln _ l P F l1, . . . , ln P M l, l R M

M :“ M l

Note: When convenient, treat M as a set

Note: Clauses are treated modulo ACI of _

Decide
l P LitpFq l, l R M

M :“ M ‚ l

Note: LitpF q def
“ tl | l literal of F u Y tl | l literal of F u
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Transition Rules for the Original DPLL

Repairing the assignment

Fail
l1 _ ¨ ¨ ¨ _ ln P F l1, . . . , ln P M ‚ R M

fail

Backtrack

l1 _ ¨ ¨ ¨ _ ln P F l1, . . . , ln P M M “M ‚ l N ‚ R N

M :“M l

Note: Last premise of Backtrack enforces chronological backtracking

29



Transition Rules for the Original DPLL

Repairing the assignment

Fail
l1 _ ¨ ¨ ¨ _ ln P F l1, . . . , ln P M ‚ R M

fail

Backtrack

l1 _ ¨ ¨ ¨ _ ln P F l1, . . . , ln P M M “M ‚ l N ‚ R N

M :“M l

Note: Last premise of Backtrack enforces chronological backtracking

29



From DPLL to CDCL Solvers (1)

To model conflict-driven backjumping and learning, add to states a
third component C whose value is either no or a conflict clause

States: fail or xM,F,Cy

Initial state:

• xpq, F0, noy, where F0 is to be checked for satisfiability

Expected final states:

• fail if F0 is unsatisfiable
• xM,G, noy otherwise, where

• G is equivalent to F0 and
• M satisfies G

30
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From DPLL to CDCL Solvers (2)

Replace Backtrack with

Conflict
C “ no l1 _ ¨ ¨ ¨ _ ln P F l1, . . . , ln P M

C :“ l1 _ ¨ ¨ ¨ _ ln

Explain
C “ l _D l1 _ ¨ ¨ ¨ _ ln _ l P F l1, . . . , ln ăM l

C :“ l1 _ ¨ ¨ ¨ _ ln _D

Backjump
C “ l1 _ ¨ ¨ ¨ _ ln _ l lev l1, . . . , lev ln ď i ă lev l

C :“ no M :“ Mris l

Maintain invariant: F |ùp C and M |ùp  C when C ‰ no

Note: |ùp denotes propositional entailment
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From DPLL to CDCL Solvers (3)

Modify Fail to

Fail
C ‰ no ‚ R M

fail
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From DPLL to CDCL Solvers (3)
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C ‰ no ‚ R M

fail
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Execution Example

F :“ t1, 1_ 2, 3_ 4, 5_ 6, 1_ 5_ 7, 2_ 5_ 6_ 7u

M F C rule
F no

1 F no by Propagate
1 2 F no by Propagate

1 2 ‚ 3 F no by Decide
1 2 ‚ 3 4 F no by Propagate

1 2 ‚ 3 4 ‚ 5 F no by Decide
1 2 ‚ 3 4 ‚ 5 6 F no by Propagate

1 2 ‚ 3 4 ‚ 5 6 7 F no by Propagate
1 2 ‚ 3 4 ‚ 5 6 7 F 2_ 5_ 6_ 7 by Conflict
1 2 ‚ 3 4 ‚ 5 6 7 F 1_ 2_ 5_ 6 by Explain with 1_ 5_ 7
1 2 ‚ 3 4 ‚ 5 6 7 F 1_ 2_ 5 by Explain with 5_ 6

1 2 5 F no by Backjump
1 2 5 ‚ 3 F no by Decide

¨ ¨ ¨
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From DPLL to CDCL Solvers (4)

Also add

Learn
F |ùp C C R F

F :“ FY tCu

Forget
C “ no F “ GY tCu G |ùp C

F :“ G

Restart
M :“ Mr0s C :“ no

Note: Learn can be applied to any clause stored in C when C ‰ no
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From SAT to SMT

Same states and transitions but

• F contains quantifier-free clauses in some theory T

• M is a sequence of theory literals and decision points

• the DPLL system is augmented with rules

T -Conflict, T -Propagate, T -Explain

• maintains invariant: F |ùT C and M |ùp  C when C ‰ no

Def. F |ùT G iff every model of T that satisfies F satisfies G as well

35



SMT-level Rules

Fix a theory T

T -Conflict
C “ no l1, . . . , ln P M l1, . . . , ln |ùT K

C :“ l1 _ ¨ ¨ ¨ _ ln

T -Propagate
l P LitpFq M |ùT l l, l R M

M :“ M l

T -Explain
C “ l _D l1, . . . , ln |ùT l l1, . . . , ln ăM l

C :“ l1 _ ¨ ¨ ¨ _ ln _D

Note: K = empty clause

Note: |ùT decided by theory solver
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Modeling a Very Lazy Theory Approach

gpaq “ c
looomooon

1

^ fpgpaqq ‰ fpcq
loooooooomoooooooon

2

_ gpaq “ d
looomooon

3

^ c ‰ d
loomoon

4

M F C rule
1, 2_ 3, 4 no

1 4 1, 2_ 3, 4 no by Propagate`
1 4 ‚ 2 1, 2_ 3, 4 no by Decide
1 4 ‚ 2 1, 2_ 3, 4 1_ 2_ 4 by T -Conflict
1 4 ‚ 2 1, 2_ 3, 4, 1_ 2_ 4 1_ 2_ 4 by Learn

1 4 1, 2_ 3, 4, 1_ 2_ 4 no by Restart
1 4 2 3 1, 2_ 3, 4, 1_ 2_ 4 no by Propagate`
1 4 2 3 1, 2_ 3, 4, 1_ 2_ 4, 1_ 3_ 4 1_ 3_ 4 by T -Conflict,Learn

fail by Fail
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A Better Lazy Approach

The very lazy approach can be improved considerably with

• An on-line SAT engine,
which can accept new input clauses on the fly

• an incremental and explicating T -solver,
which can

1. check the T -satisfiability of M as it is extended and
2. identify a small T -unsatisfiable subset of M once M becomes
T -unsatisfiable
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Lazy Approach – Strategies

Ignoring Restart (for simplicity), a common strategy is to apply the
rules using the following priorities:

1. If a clause is falsified by the current assignment M,
apply Conflict

2. If M is T -unsatisfiable, apply T -Conflict

3. Apply Fail or Explain+Learn+Backjump as appropriate

4. Apply Propagate

5. Apply Decide

Note: Depending on the cost of checking the T -satisfiability of M,
Step (2) can be applied with lower frequency or priority
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Theory Propagation

With T -Conflict as the only theory rule, the theory solver is used just
to validate the choices of the SAT engine

With T -Propagate and T -Explain, it can also be used to guide the
engine’s search [Tin02]

T -Propagate
l P LitpFq M |ùT l l, l R M

M :“ M l

T -Explain
C “ l _D l1, . . . , ln |ùT l l1, . . . , ln ăM l

C :“ l1 _ ¨ ¨ ¨ _ ln _D
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l P LitpFq M |ùT l l, l R M

M :“ M l

T -Explain
C “ l _D l1, . . . , ln |ùT l l1, . . . , ln ăM l

C :“ l1 _ ¨ ¨ ¨ _ ln _D
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Theory Propagation Example

gpaq “ c
looomooon

1

^ fpgpaqq ‰ fpcq
loooooooomoooooooon

2

_ gpaq “ d
looomooon

3

^ c ‰ d
loomoon

4

M F C rule
1, 2_ 3, 4 no

1 4 1, 2_ 3, 4 no by Propagate`
1 4 2 1, 2_ 3, 4 no by T -Propagate p1 |ùT 2q

1 4 2 3 1, 2_ 3, 4 no by T -Propagate p1, 4 |ùT 3q
1 4 2 3 1, 2_ 3, 4 2_ 3 by Conflict

fail by Fail

Note: T -propagation eliminates search altogether in this case
no applications of Decide are needed
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Modeling Modern Lazy SMT Solvers

At the core, current lazy SMT solvers are implementations of the
transition system with rules

(1) Propagate, Decide, Conflict, Explain, Backjump, Fail

(2) T -Conflict, T -Propagate, T -Explain

(3) Learn, Forget, Restart
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Reasoning by Cases in Theory Solvers

For certain theories, determining that a set M is T -unsatisfiable
requires reasoning by cases.

Example: T = the theory of arrays.

M “ t rpwpa, i, xq, jq ‰ x
loooooooooomoooooooooon

1

, rpwpa, i, xq, jq ‰ rpa, jq
loooooooooooooomoooooooooooooon

2

u

i “ j) Then, rpwpa, i, xq, jq “ x. Contradiction with 1.

i ‰ j) Then, rpwpa, i, xq, jq “ rpa, jq. Contradiction with 2.

Conclusion: M is T -unsatisfiable
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Case Splitting

A complete T -solver reasons by cases via (internal) case splitting and
backtracking mechanisms

An alternative is to lift case splitting and backtracking from the
T -solver to the SAT engine

Basic idea: encode case splits as sets of clauses and send them as
needed to the SAT engine for it to split on them [BNOT06]

Possible benefits:

• All case-splitting is coordinated by the SAT engine

• Only have to implement case-splitting infrastructure in one place

• Can learn a wider class of lemmas
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Splitting on Demand

Basic idea: encode case splits as a set of clauses and send them as
needed to the SAT engine for it to split on them

Basic Scenario:

M “ t. . . , s “ rpwpa, i, tq, jq
looooooomooooooon

s1

, . . .u

• Main SMT module: “Is M T -unsatisfiable?”

• T -solver: “I do not know yet, but it will help me if you consider
these theory lemmas:

s “ s1 ^ i “ j Ñ s “ t, s “ s1 ^ i ‰ j Ñ s “ rpa, jq ”
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Modeling Splitting on Demand

To model the generation of theory lemmas for case splits, add the rule

T -Learn

|ùT Dvpl1 _ ¨ ¨ ¨ _ lnq l1, . . . , ln P LS v vars not in F

F :“ FY tl1 _ ¨ ¨ ¨ _ lnu

where LS is a finite set of literals dependent on the initial set of
clauses (see [BNOT06] for a formal definition of LS)

Note: For many theories with a theory solver, there exists
an appropriate finite LS for every input F

The set LS does not need to be computed explicitly
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Modeling Splitting on Demand

Now we can relax the requirement on the theory solver:
When M |ùp F, it must either

• determine whether M |ùT K or
• generate a new clause by T -Learn containing

at least one literal of LS undefined in M

The T -solver is required to determine whether M |ùT K only if all
literals in LS are defined in M

Note: In practice, to determine if M |ùT K, the T -solver only needs
a small subset of LS to be defined in M
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Example — Theory of Finite Sets

F : x “ y Y z ^ y ­“ H _ x ­“ z

M F rule
x “ y Y z F by Propagate`

x “ y Y z ‚ y “ H F by Decide
x “ y Y z ‚ y “ H x ‰ z F by Propagate
x “ y Y z ‚ y “ H x ‰ z F, px “ z _ e P x _ e P zq, by T -Learn

F,

px “ z _ e R x _ e R zq
x “ y Y z ‚ y “ H x ‰ z ‚ e P x F, px “ z _ e P x _ e P zq, by Decide

F,

px “ z _ e R x _ e R zq
x “ y Y z ‚ y “ H x ‰ z ‚ e P x e R z F, px “ z _ e P x _ e P zq, by Propagate

F,

px “ z _ e R x _ e R zq

T -solver can make the following deductions at this point:

e P x ¨ ¨ ¨ ñ e P y Y z ¨ ¨ ¨ ñ e P y ¨ ¨ ¨ ñ e P H ñ K

This enables an application of T -Conflict with clause

x ‰ y Y z _ y ‰ H _ x “ z _ e R x _ e P z
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px “ z _ e R x _ e R zq
x “ y Y z ‚ y “ H x ‰ z ‚ e P x e R z F, px “ z _ e P x _ e P zq, by Propagate

F,

px “ z _ e R x _ e R zq

T -solver can make the following deductions at this point:

e P x ¨ ¨ ¨ ñ e P y Y z ¨ ¨ ¨ ñ e P y ¨ ¨ ¨ ñ e P H ñ K

This enables an application of T -Conflict with clause

x ‰ y Y z _ y ‰ H _ x “ z _ e R x _ e P z
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Some Applications of SMT

Program Analysis and Verification

• Software Model Checking1 (e.g., BLAST, SLAM)

• K-Induction-Based Model Checking2 (e.g., Kind)

• Concolic or Directed Automated Random Testing3 (e.g., CUTE,
KLEE, PEX)

• Program Verifiers (e.g., VCC,4 Why35)

• Translation Validation for Compilers (e.g., TVOC6 )

1
Jhala and Majumdar, Software Model Checking, ACM Computing Surveys 2009.

2
Hagen and Tinelli, Scaling Up the Formal Verification of Lustre Programs with SMT-Based Techniques, FMCAD’08.

3
Godefroid, Klarlund, and Sen, DART: Directed Automated Random Testing, PLDI ’05

4
Dahlweid, Moskal, Santen et al. VCC: Contract-based modular verification of concurrent C, ICSE ’09.

5
Bobot, Filliâtre, Marché, and Paskevich, Why3: Shepherd Your Herd of Provers, Boogie ’11.

6
Zuck, Pnueli, Goldberg, Barrett et al., Translation and Run-Time Validation of Loop Transformations, FMSD ’05.
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Some Applications of SMT

Non-verification Applications

• AI (e.g., Robot Task Planning7)
• Biology (e.g., Analysis of Synthetic Biology Models8)
• Databases (e.g., Checking Preservation of Database Integrity9)
• Network Analysis (e.g., Checking Security of OpenFlow

Rules10)
• Scheduling (e.g., Rotating Workforce Scheduling11)
• Security (e.g., Automatic Exploit Generation12)
• Synthesis (e.g., Symbolic Term Exploration13)

7
Witsch, Skubch, et al., Using Incomplete Satisfiability Modulo Theories to Determine Robotic Tasks, IROS ’13.

8
Yordanov and Wintersteiger, SMT-based analysis of Biological Computation, NFM ’13.

9
Baltopoulos, Borgström, and Gordon, Maintaining Database Integrity with Refinement Types, ECOOP ’11.

10
Son, Shin, Yegneswaran et al., Model Checking Invariant Security Properties in OpenFlow, ICC ’13.

11
Erkinger, Rotating Workforce Scheduling as Satisfiability Modulo Theories, Master’s Thesis, TU Wien, 2013.

12
Avgerinos, Cha, Rebert et al. Automatic Exploit Generation, CACM ’14.

13
Kneuss, Kuraj, Kuncak, and Suter, Synthesis Modulo Recursive Functions, OOPSLA ’13.
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New Theories

SMT users are clamouring for more capabilities

New theories in the pipeline

• Theory of sequences

• Theory of finite fields

• Theory of bags and tables

Going forward

• There is a huge opportunity to design and implement decision
procedures for new domain-specific theories
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Scalability

Plenty of room for performance improvements

• SMT innovations continue at both the system and algorithm level

• Example: Each year at SMT-COMP, new problems are solved
that were previously too difficult for any solver

• Parallel computing still largely untapped

Amazon

• Ongoing collaboration with Amazon with ambitious goals for
providing SMT solving as a service in the cloud

• Lots of interesting research questions about how to make use of
Amazon’s massive resources to do SMT solving on a massive
scale
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Summary

SMT solvers

• Provide general-purpose logical reasoning

• Can be customized for domain-specific reasoning

• Enabler for formal methods: automatic, expressive, scalable

• No shortage of challenging research problems
• with immediate practical impact
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More information

SMT resources

• SMT Survey Article: available at
http://theory.stanford.edu/~barrett/pubs/BKM14.pdf

• SMT-LIB standards and library http://smt-lib.org

• SMT Competition http://smtcomp.org

• SMT Workshop http://smt-workshop.org

cvc5

• Visit the cvc5 website: http://cvc5.github.io

• Contact a cvc5 team member

• We welcome questions, feedback, collaboration proposals
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Suggested Readings

1. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis-Putnam-Logemann- Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, 2006.

2. R. Sebastiani. Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation 3:141-224, 2007.

3. S. Krstić and A. Goel. Architecting Solvers for SAT Modulo Theories: Nelson-Oppen
with DPLL. In Proceeding of the Symposium on Frontiers of Combining Systems
(FroCoS’07). Volume 4720 of LNCS. Springer, 2007.

4. C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli. Satisfiability Modulo Theories. In
Handbook of Satisfiability. IOS Press, 2009.
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