
The Art and Science of Designing Specifications

Michael George

Stanford, August 2022



Types of properties

So far: how to write specs

Now: what specs to write?

When designing specifications, it helps to work systematically

▶ Unit-test-style rules
▶ Variable relationships and changes
▶ State transition diagrams
▶ Stakeholder rules
▶ High-level properties



Unit-test style rules
▶ Public functions and interfaces should have documentation

▶ Describe what their arguments are
▶ Describe what effects they should have
▶ Describe what they should return
▶ Describe when they should revert

▶ This documentation can usually be turned directly into specs
▶ You can write one or more rules for eachmethod
▶ We call these “unit-test style rules”
▶ Example: transfer decreases sender’s balance by amount

▶ Note: you can get a list of public functions from the Prover (example)
▶ In practice, the documentation is often incomplete

▶ Think about the documentation you’d write
▶ Maybe submit a PR!

https://prover.certora.com/output/6554/7c3d8d9cd1e4a8d43246?anonymousKey=cd65d8676f1af617d565ba0e44d77a1f8ffd54a8 


Variable relationships and changes
Variable relationships

▶ For each pair of variables, ask “how are they related”?
▶ Each relationship can be written as an invariant
▶ Include related contracts!

Variable changes

▶ For each variable, ask “how can it change, and when?”
▶ Each variable has one or more parametric rules:

rule variableChange {
mathint value_before = getValue();

method f; env e; calldataarg args;
f(e,args);

mathint value_after = getValue();

assert value_before != value_after => ...;
}



State transition diagrams
Often contracts have a natural “flow-chart” feel:

uninitialized proposed

accepted

rejected

executedcreate() close()

close()

execute()

These can naturally be turned into rules:

▶ Define properties of each state
definition accepted_state (env e) returns bool =

initialized() && executable() != 0 && for() > against() && e.block.timestamp > deadline()

▶ Invariant: contract is always in one and only one state
▶ Each transition can have one or more rules, like variable changes



Stakeholder rules
Think about what can go wrong from stakeholders’ perspectives

▶ User: I deposit funds and can’t get them back
▶ Bank: Someone removes all the funds

Each “user (horror) story” can be turned into properties

Oftenmultiple rules: e.g. to show “after deposit I can reclaim funds”

▶ If I deposit, I get a balance
▶ My balance doesn’t go down unless I withdraw or transfer
▶ I can always withdrawwithout revert
▶ When I withdraw, the contract transfers tokens tome



High-level properties
There are some simple properties that can often get good coverage

▶ If this goes up, that goes up (correlation)
▶ If this is zero, that is zero
▶ Two small operations are the same as one big operation (additivity)
▶ Different ways to do the same thing have the same effect

Sometimes, more abstract properties are useful

▶ Get good coverage quickly
▶ Help us think in a different way, avoiding spec bugs



Summary
When designing specifications, it helps to work systematically

▶ Unit-test-style rules
▶ Describe the expected behavior of each function

▶ Variable relationships and changes
▶ Describe the relationships between pairs of variables
▶ Describe the conditions when variables change

▶ State transition diagrams
▶ Identify parts of the contract that transition from state to state
▶ Check that contract is always in exactly one state
▶ Describe conditions when transitions happen

▶ Stakeholder rules
▶ Think about what can go wrong
▶ Look at your advertising

▶ High-level properties
▶ Think abstractly about your functions and their relationships



AAVE Token Example



Voting and delegation
The AAVE token is used for voting on proposals

▶ Themore tokens you hold, themore votes you get

You can delegate your vote to another address:

▶ Delegation is all-or-nothing
▶ You can’t redelegate tokens

alice bob chuckDelegation:

Token balance:

Voting power:

10 7 5

0 15 7



A few more details
▶ The tokenmanages two types of voting power: VOTING and

PROPOSITION

▶ The contract supports “meta-delegation”
▶ Allows delegation for someone other than msg.sender
▶ Requires a digital certificate

▶ The contract is also an ERC20



Exercise: write (English) properties for governance
1. Fetch the code: in the Examples repo,

▶ git pull
▶ git submodule update --init
▶ Alternately, get directly at

https://github.com/Certora/aave-token-v3

2. Review the interfaces
▶ Main interface is in

src/interfaces/IGovernancePowerDelegationToken.sol
▶ The token also implements the ERC20 interface

3. Start writing down properties!
▶ https://bit.ly/certora-stanford/

https://github.com/Certora/aave-token-v3
https://bit.ly/certora-stanford/

