The Art and Science of Designing Specifications

'ZA;‘ certora

Michael George

Stanford, August 2022

724*;‘ certora

Types of properties
So far: how to write specs
Now: what specs to write?

When designing specifications, it helps to work systematically

Unit-test-style rules

Variable relationships and changes
State transition diagrams
Stakeholder rules

High-level properties

724*;‘ certora

Unit-test style rules

Public functions and interfaces should have documentation

Describe what their arguments are
Describe what effects they should have
Describe what they should return
Describe when they should revert

This documentation can usually be turned directly into specs

You can write one or more rules for each method
We call these “unit-test style rules”
Example: transfer decreases sender’s balance by amount

Note: you can get a list of public functions from the Prover (example)

In practice, the documentation is often incomplete

Think about the documentation you’d write
Maybe submit a PR!

724*;‘ certora

https://prover.certora.com/output/6554/7c3d8d9cd1e4a8d43246?anonymousKey=cd65d8676f1af617d565ba0e44d77a1f8ffd54a8

Variable relationships and changes

Variable relationships

For each pair of variables, ask “how are they related”?
Each relationship can be written as an invariant
Include related contracts!

Variable changes

For each variable, ask “how can it change, and when?”
Each variable has one or more parametric rules:

rule variableChange {
mathint value_before = getValue();

method f; env e; calldataarg args;
f(e,args);

mathint value_after = getValue();

assert value_before != value_after => ...;

4
7

4@ certora

State transition diagrams

Often contracts have a natural “flow-chart” feel:

execute()

accepted
create() close()
uninitialized proposed

C]OSG()

These can naturally be turned into rules:

Define properties of each state

definition accepted_state (env e) returns bool =
initialized() &% executable() != 0 &% for() > against() &% e.block.timestamp > deadline()

Invariant: contract is always in one and only one state

Each transition can have one or more rules, like variable changes ,gg certora

Stakeholder rules

Think about what can go wrong from stakeholders’ perspectives

User: | deposit funds and can’t get them back
Bank: Someone removes all the funds

Each “user (horror) story” can be turned into properties

Often multiple rules: e.g. to show “after deposit | can reclaim funds”

If | deposit, | get a balance

My balance doesn’t go down unless | withdraw or transfer
| can always withdraw without revert

When | withdraw, the contract transfers tokens to me

74

X

N

certora

High-level properties
There are some simple properties that can often get good coverage

If this goes up, that goes up (correlation)

If this is zero, that is zero

Two small operations are the same as one big operation (additivity)
Different ways to do the same thing have the same effect

Sometimes, more abstract properties are useful

Get good coverage quickly
Help us think in a different way, avoiding spec bugs

certora

Summary

When designing specifications, it helps to work systematically

Unit-test-style rules
Describe the expected behavior of each function
Variable relationships and changes
Describe the relationships between pairs of variables
Describe the conditions when variables change
State transition diagrams
Identify parts of the contract that transition from state to state
Check that contract is always in exactly one state
Describe conditions when transitions happen
Stakeholder rules
Think about what can go wrong
Look at your advertising
High-level properties
Think abstractly about your functions and their relationships

2

<

§ certora

AAVE Token Example

724*;‘ certora

Voting and delegation

The AAVE token is used for voting on proposals
The more tokens you hold, the more votes you get
You can delegate your vote to another address:

Delegation is all-or-nothing
You can’t redelegate tokens

. /\
Delegation:

Token balance: 10 7

Voting power: 0] 15

5

7

K
74

O

N

certora

A few more details

The token manages two types of voting power: VOTING and
PROPOSITION

The contract supports “meta-delegation”

Allows delegation for someone other than msg. sender
Requires a digital certificate

The contractis also an ERC20

724*;‘ certora

Exercise: write (English) properties for governance

Fetch the code: in the Examples repo,
git pull
git submodule update --init
Alternately, get directly at
https://github.com/Certora/aave-token-v3

Review the interfaces

Main interface isin
src/interfaces/IGovernancePowerDelegationToken.sol
The token also implements the ERC20 interface

Start writing down properties!
https://bit.ly/certora-stanford/

74

X

N

certora

https://github.com/Certora/aave-token-v3
https://bit.ly/certora-stanford/

